Using standards to make assessment in e-textbooks scalable, engaging but robust

During last week’s EDUPUB workshop, I presented a demo of how an IMS QTI 2.1 question item could be embedded in an EPUB3 e-book in a way that is engaging, but also works across many e-book readers. Here’s the why and how.

One of the most immediately obvious differences between a regular book and an e-textbook is the inclusion of little quizzes at the end of a chapter that allow the learner to check their understanding of what they’ve just learned. Formative assessment matters in textbooks.

When moving to electronic textbooks, there is a great opportunity to make that assessment more interactive, and provide richer feedback, and connect the learning to a wider view of how a student is doing (i.e. learning analytics). The question is how to do that in a way that works across many e-reading devices and applications, on a scale that works for publishers.

QTI item in Adobe Editions

QTI item in Adobe Editions

Scalability is where interoperability standards like EPUB3, IMS Learning Tool Interoperability (LTI) and IMS Question and Test Interoperability (QTI) 2.1 come in. People use a large number of different software systems in the authoring, management, and playback of e-books. Connecting each of those to all the others with one-off custom integrations just gets too complex, too expensive and too brittle; that’s why an increasing number of publishers and software vendors agreed on the EPUB specification. As long as you implement that spec, solutions can scale across many e-book applications. The same goes for question and test material, where IMS QTI does the same job. LTI does that job for connecting VLEs to any online learning tool.

Which leaves the question of how to square the circle of making the assessment experience as engaging and effective as possible, but also work on devices with very different capabilities.

Fortunately, EPUB3 files can include a number of techniques that allow an author to adapt the content to the capability of the device it is being read on. I used those techniques to present the same QTI item in three different ways; as a static quiz – much like a printed book –, as a simple interactive widget and as a feedback rich test run by an online assessment system inside the book. The latter option makes detailed analytics data available and it should also make it possible to send a grade to a VLE automatically.

The how

QTI item in Apple iBooks

QTI item in Apple iBooks

For the static representation and the interactive widget, I relied on Steve Lay’s rather brilliant transform from QTI XML to HTML5 (and back again), and to make the HTLM5 interactive with some javascript. By including this QTI HTML5 in the EPUB, you get all the advantages of standard QTI, in a way that still works in a simple, offline reader such as Adobe Editions as well as more capable software such as Apple’s iBooks.

For the most capable, online ebook readers such as Readium, the demo e-textbook connects to QTIWorks, an online QTI compliant assessment engine. It does that via IMS LTI 1.1, but in a somewhat unusual way: in LTI terms, the e-book behaves as a tool consumer. That is; like a VLE. Using a hash of an Oauth secret and key, it establishes a connection to QTIWorks, identifies the user, and retrieves the right quiz to show inside the ebook. A place to send the results of the quiz to is also provided, but I’ve not tested that yet. QTIWorks makes detailed report available of what the learner did exactly with each item, which can be retrieved in a variety of machine readable formats.

QTI item in Readium

QTI item in Readium

Because the secret and the key have to be included in the book, the LTI connection the book establishes is not as secure as an LTI connection from a proper VLE. For access to some formative assessment, that may be a price worth paying, though.

The demo EPUB3 uses both scripting and some metadata to determine which version of the QTI item to show. The QTI item, the LTI launch and the EPUB textbook are all valid according to their specifications, and rely on stock readers to work.

Acknowledgements and links

David McKain for making QTIWorks
Steve Lay for the QTI HTML transforms
John Kristian of the OAuth project for the OAuth javascript library
Stephen Vickers for the ceLTIc IMS LTI development tools

The (ugly, content-less) demonstration EPUB3 and associated code is available from Github.

Meshing up a JISC e-learning project timeline, or: It’s Linked Data on the Web, stupid

Inspired by the VirtualDutch timeline, I wondered how easy it would be to create something similar with all JISC e-learning projects that I could get linked data for. It worked, and I learned some home truths about scalability and the web architecture in the process.

As Lorna pointed out, UCL’s VirtualDutch timeline is a wonderful example of using time to explore a dataset. Since I’d already done ‘place’ in my previous meshup, I thought I’d see how close I could get with £0.- and a few nights tinkering.

The plan was to make a timeline of all JISC e-learning projects, and the developmental and affinity relations between them that are recorded in CETIS’ PROD database of JISC projects. More or less like Scott Wilson and I did by hand in a report about the toolkits and demonstrators programme. This didn’t quite work; SPARQLing up the data is trivial, but those kinds of relations don’t fit well into the widely used Simile timeline from both a technical and usability point of view. I’ll try again with some other diagram type.

What I do have is one very simple, and one not so simple timeline for e-learning projects that get their data from the intensely useful rkb explorer Linked Data knowledge base of JISC projects and my own private PROD stash:

Recipe for the simple one

  • Go to the SPARQL proxy web service
  • Tell it to ask this question
  • Tell the proxy to ask that question of the RKB by pointing it at the RKB SPARQL endpoint (http://jisc.rkbexplorer.com/sparql/), and order the results as CSV
  • Copy the URL of the CSV results page that the proxy gives you
  • Stick that URL in a ‘=ImportData(“{yourURL}”)’ function inside a fresh Google Spreadsheet
  • Insert timeline gadget into Google spreadsheet, and give it the right spreadsheet range
  • Hey presto, one timeline coming up:
Screenshot of the simple mashup- click to go to the live meshup

Screenshot of the simple mashup- click to go to the live meshup

Recipe for the not so simple one

For this one, I wanted to stick a bit more in the project ‘bubbles’, and I also wanted the links in the bubbles to point to the PROD pages rather than the RKB resource pages. Trouble is, RKB doesn’t know about data in PROD, and for some very sound reasons I’ll come to in a minute, won’t allow the pulling in of external datasets via SPARQL’s ‘FROM’ operator either. All other SPARQL endpoints in the web that I know of that allow FROM couldn’t handle my query- they either hung or conked out. So I did this instead:

  • Download and install your own SPARQL endpoint (I like Leigh Dodds’ simple but powerful Twinkle)
  • Feed it this query
  • Copy and paste the results into a spreadsheet and fiddle with concatenation
  • Hoist spreadsheet into Google docs
  • Insert timeline gadget into Google spreadsheet, and give it the right spreadsheet range
  • Hey presto, a more complex timeline:
Click to go to the live meshup

Click to go to the live meshup

It’s Linked Data on the Web, stupid

When I first started meshing up with real data sets on the web (as opposed to poking my own triple store), I had this inarticulate idea that SPARQL endpoints were these magic oracles that we could ask anything about anything. And then you notice that there is no federated search facility built into the language. None. And that the most obvious way of querying across more than one dataset – pulling in datasets from outside via SPARQL’s FROM – is not allowed by many SPARQL endpoints. And that if they do allow FROM, they frequently cr*p out.

The simple reason behind all this is that federated search doesn’t scale. The web does. Linked Data is also known as the Web of Data for that reason- it has the same architecture. SPARQL queries are computationally expensive at the best of times, and federated SPARQL queries would be exponentially so. It’s easy to come up with a SPARQL query that either takes a long time, floors a massive server (or cloud) or simply fails.

That’s a problem if you think every server needs to handle lots of concurrent queries all the time, especially if it depends on other servers on a (creaky) network to satisfy those queries. By contrast, chomping on the occasional single query is trivial for a modern PC, just like parsing and rendering big and complex html pages is perfectly possible on a poky phone these days. By the same token, serving a few big gobs of (RDF XML) text that sits at the end of a sensible URL is an art that servers have perfected over the past 15 years.

The consequence is that exposing a data set as Linked Data is not so much a matter of installing a SPARQL endpoint, but of serving sensibly factored datasets in RDF with cool URLs, as outlined in Designing URI Sets for the UK Public Sector (pdf). That way, servers can easily satisfy all comers without breaking a sweat. That’s important if you want every data provider to play in Linked Data space. At the same time, consumers can ask what they want, without constraint. If they ask queries that are too complex or require too much data, then they can either beef up their own machines, or live with long delays and the occasional dead SPARQL engine.